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Abstract

This article considers the joint demosaicing of colour
and polarisation image content captured with a Colour and
Polarisation Filter Array imaging system. The Linear
Minimum Mean Square Error algorithm is applied to this
case, and its performance is compared to the state-of-the-
art Edge-Aware Residual Interpolation algorithm. Results
show that the LMMSE demosaicing method gives statisti-
cally higher scores on the largest tested database, in term
of peak signal-to-noise ratio relatively to a CPFA-dedicated
algorithm.

Introduction

From the development of Colour Filter Arrays (CFA)
and Spectral Filter Arrays imaging (SFA) systems [7], we
observe a tendency towards its generalisation to several
joint optical modalities, e.g. polarisation and spectral.
We refer to General Filter Arrays (GFA) the most general
case. One particular instance of GFA is the Colour and
Polarisation Filter Array (CPFA), that has one commer-
cial implementation with the SONY IMX250 MYR [15].

CPFA, like GFA, needs their spatial resolution to
be reconstructed in order to avoid misinterpretation in
band registration for image analysis. Like for the Bayer
colour cameras, a typical way to reconstruct the resolu-
tion and register multimodal data is demosaicing. Exten-
sive works were conducted on colour images [8]. More re-
cently, several works were conducted to reconstruct spec-
tral data [16, 10] and polarisation data [9]. The most
recent work to date reconstructs both colour and polar-
isation [12] from the Sony IMX250 MYR sensor. This
sensor combines three colour filters (¢ = r,g,b) arranged
in a Quad Bayer [13] spatial arrangement, and four polar-
isation angles of analysis equally-distributed between 0°
and 180° (0 = 0°,45°,90°,135°). The sensor assembly is
shown in Figure 1.

Demosaicing algorithms are a specific instance of
super-resolution algorithm that benefits from several as-
sumptions, such as spatial correlations and spectral cor-
relations. In the case of joint colour and polarisation ac-
quisition, we observed several modality correlations [4].
Thus, a linear model would permit to estimate the values
of each of the missing bands at a pixel location.

In this article, we apply the Linear Minimum Mean
Square Error (LMMSE) demosaicing algorithm to the case
of colour and polarisation data. LMMSE was successfully
used to demosaic colour images with results competitive
to the state-of-the-art [3]. The model is introduced in
the next Section. Then, we apply this method on three
independent databases and compare the results with the

state-of-the-art Edge-Aware Residual Interpolation algo-
rithm (EARI) [12]. The comparison is performed by sen-
sor band, but also on standardised data representation,
namely intensity RGB, and the Stokes-vector elements Sy,
S1 and So for the polarisation. Results demonstrate that
the LMMSE method performs significantly better than the
EARI, but the improvement is somewhat marginal, of an
order of 1dB in average. Visual inspection of a few images
show that the LMMSE provides better results. It is to
be noted that the data used in our experiment is limited,
so this tendency needs to be confirmed on a large dataset
when available.
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Figure 1: The Color Polarisation Filter Array design of the
SONY IMX250 MYR sensor [15]. Each periodic pattern of
4 x 4 pixels (called a superpixel) senses the light through
a Polarisation Filter Array and a Color Filter Array.

LMMSE demosaicing of CPFA

In this section, we apply the LMMSE algorithm for
the case of CPFA. Be Y the full-resolution image, and
X the mosaiced CPFA image. Y is of size PHW, where
P =12 is the number of channels, and H and W the height
and the width of the image respectively. X is of size HW,
and is composed of regular sampling lattice referred as
superpixels of size h X w.

Because the LMMSE does not take into account the
spatial correlations, instead of working with 2-D images,
the algorithm applies a vectorization: the image Y is
unfolded by superpixel, giving the matrices y of size
Phw x %, as depicted in Figure 2. The latter shows the
unfolding of a single superpixel of Y into a single column
in y in the case of a CFA; the same principle applies to



CPFA. To compute the other columns y, other superpixels
are considered across the lines and columns Y such that
the number of columns of y is the number of superpixels
of the reference image.
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Figure 2: Example of the unfolding columns by columns
of a superpixel of 2 x 2 pixels (red square) with a neigh-
bourhood of 4 x 4 pixels.

Then, the mosaicing matrix M is manually com-
puted, such that it gives x, the unfolding CFA matrix
when applied on y:

r=My, (1)
where x is of size hw X % The unfolding of y is done
superpixel by superpixel, thus the mosaicing matrix M is
block-shift invariant.

The aim of demosaicing is to estimate § from the
observations x, such that the estimate image is the most
faithful to the reference matrix y. This is achieved by the
demosaicing matrix D, which is a pseudo-inverse of M,
such that:

J=Dx . (2)

D is computed with the Wiener filtering approach, which
is based on the minimisation of the minimum square error
between y and § on a large dataset of k images. D is
given by:

D = Ei{ya'(zz")""} (3)

where F is the expectation, and i € [1, k] indexes the image
in the database.

To stabilise the solution of D, a neighbourhood of size
Np, X Ny is used, such that Ny Ny > P. The new matrix
y1 contains each superpixel unfolded with its neighbour-
hood. The neighbourhood can be a sliding or a constant
one, both giving same performances if they follow the re-
lation in Equation (4) [1]:

n;L =np+h+1 (4)
néu =nwt+w+1
where n% and n, are the sizes of the constant neighbour-
hood and nj, and n. the ones of the sliding one.
However, the size of the matrices depends on the size
of the neighbourhood. In the following, the matrices that
contain neighbour pixels are denoted with index 1. The
matrix S is a constant “selection” matrix with zeroes and

ones, for removing neighbours from y;. One obtains the
following equations:

y =51y1,
1 = Miy1,
9 =Dz, (5)

D =SRMi(M;RM)™1
with

1
R= WkEl{yly{}’ (6)

hw

the mean of autocorrelation of y; over the % superpixels
of each image and over the k images of the database. The
matrix R has to be computed only one time for all the
images in the database.

Experiment
The experiment is conducted over three existing
database of full-resolution spectropolarimetric images:

o Lapray et al. [6], identified as DB1, 10 images, 150
MegaBytes (MB) of data,

e Qiu et al. [14], DB2, 40 images, 530MB of data,

e Monno et al. [12], DB3, 40 images, 1.4GB of data.

The mosaicing process of the image database is ap-
plied following the spatial arrangement of Figure 1.

The image in DB3 has been capture with a division-
of-amplitude technique for the spectral information (a 3-
CCD camera), and a division-of-time technique for the
polarisation information (by rotating a polarizer in front
of the camera). However, the images available in the
databases DB1 and DB2 have been captured with a
division-of-focal-plane technique for the spectral informa-
tion (i.e. with a CFA). As in [4], to mitigate any errors
introduced by the colour demosaicing of CFA images, we
downsampled all the full-resolution images prior to mo-
saicing, to reduce their size by a factor of 0.5 (imresize
function in Matlab, with bilinear interpolation).
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Figure 3: The neighbourhood used for the implementation
of LMMSE dedicated to the CPFA. Each superpixel is
unfolded with its neighbourhood to construct the matrix
y1. Surrounded in dark, we can see the superpixel to
be unfolded, whereas the neighbourhood of 10 x 10 pixels
is in red. The groups of pixels surrounded by light blue
pertains to the other superpixels of the CPFA.




We demosaic the images using the two methods:
our application of the LMMSE method to CPFA [2]
and the last demosaicing method dedicated to PFA and
CPFA, which is the Edge-Aware Residual Interpolation
(EARI) [12].

For LMMSE demosaicing, we choose a neighbourhood
of 10 x 10 pixels, as calculated with Eq. (4). This ad-hoc
choice gave the best trade off between performance and
computational complexity. It is visualised in Figure 3.
The computation of each demosaiced image is done in a
leave-one-out manner, i.e. the training procedure of D
(and thus z, y, and R) is realised using the remaining
data other than that of the current image to demosaic.

For EARI, we employ the Matlab code provided by
the authors [12]. It starts from an estimation of the in-
tensity image from polarisation information, i.e. the Sy
Stokes vector component. They exploit the redundancy
of information that is inherent to PFA sensors which have
four polarisation angles of analysis, such that the inten-
sity So can be estimated in two ways: So1 = Ip+ Igo
or Sp2 = I45 +I135. The two estimations are averaged
for each of the four spatial directions (north, east, south,
and west). This forms the intensity estimations. Then,
weights are computed in the four directions from the in-
tensity difference So 1 — So,2, giving a larger weight if the
difference is small. Then, they apply a weighting aver-
age on the intensity estimations, to obtain the edge-aware
guide image. Finally, interpolation of missing values is
done by residual interpolation [5]. The same process is
applied for each spectral channel to demosaic the polari-
sation information. We refer the reader to the initial pa-
per [12] for more details.

Discussion

For a given database, we compute the PSNR (using
psnr Matlab function) for each channel of each image, and
we average them over all the images of the database. As
LMMSE results has border effects due to neighbourhoods,
the demosaiced and the full resolution images are all re-
duced by eight lines and eight columns (corresponding to
the sizes of two lines and two column of superpixels) before
PSNR computation.

The mean PSNR and the standard deviation for
EARI and the LMMSE algorithms are given in Table 1.

On DB1, LMMSE and EARI provide similar PSNR
results for each of the 12 bands.

On DB2, EARI provides somewhat better results on
the red and blue channels but results are comparable on
the green channel for both methods. However, on DB2,
both methods provide high PSNR values, and less differ-
ences between the green channel and the two others. Since
this observation is not related to one algorithm, it should
be related to the image statistics and content.

On DB3, we observe that LMMSE is performing bet-
ter than EARI in terms of average PSNR and standard
deviation.

Table 2 shows CPSNR (average and standard devi-
ation) by polarisation Stokes component Sp, S1, and Ss.
We make similar observations in the Stokes standard po-
larisation representation.

On Figure 4, we can see that the LMMSE and EARI
perform similarly on DB1, EARI is better for DB2, and
LMMSE is in average better than the EARI for DB3.
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Figure 4: Box plot computed on average data over all
channels, and for each method and database. The central
red mark indicates the median. The boxes extend from
the 25% quartiles to the 75% quartiles, and the whiskers
indicate the full ranges of the data excluding the outliers
that are shown with red crosses.

These observations are confirmed by a Wilcoxon signed
rank test which gives p-values of 0.33, 7.97- 107% and
5.2-1073Y for DB1, DB2, and DB3 respectively. It is
computed over the PSNR of all bands for all images re-
constructed by LMMSE in front of EARI.

Generally, from the Table 1, we can observe that
the LMMSE method gives statistically better results than
the EARI method for DB3, but not for DB2. It can be
explain by the importance for LMMSE to have a large
quantity of data to train the linear transformation. The
PSNR difference can also come from the image statis-
tics and content that seem very different for these two
datasets. DB2 exhibits mostly uniform backgrounds and
greyish/transparent objects, whereas DB3 contains highly
textured and colourful objects, so that LMMSE is specif-
ically good for these kind of data. Moreover, the result
for DB3 must be put into perspective with the results ob-
tained in [12] on the same database, where EARI is better
than other algorithms by an increment of 0.04dB in av-
erage compared to [11]. By looking at Table 3 of [12],
LMMSE appears to be by far the best performing for this
database (+1.3dB in average compared to EARI).

Figures 5, 6, 7, and 8 show a snapshot example im-
age. On Figures 5, 6, and 7, we compare the 12 bands
of the original image and their estimated reconstruction
by EARI and LMMSE. In those visualisations, the results
appear to be fairly similar, with perhaps a better text
reconstruction in the case of LMMSE for some bands.
Figure 8 provides the colour image and false colour vi-
sualisation of the polarimetric information for each of the
spectral bands. We observe on Figure 8a,b,c that EARI
is generating aliasing artifacts accordingly to the spatial
interpolation used, while the LMMSE shows very little of
this artifact. For the polarisation of the green channel,
EARI shows some artifacts, while LMMSE demonstrates
a rather faithful fidelity to the original.

To conclude, it appears that the generic LMMSE al-
gorithm applied to CPFAs performs just as well as the
state-of-the-art algorithm dedicated to CPFA. However,
the improvement seems significant when sufficient data is



DB1 (150MB) DB2 (530MB) DB3 (1.4GB)

LMMSE EARI LMMSE EARI LMMSE EARI

7 o 7 o n o 7 o o o o o
Ior || 3525 | 379 || 35.49 | 4.45 || 42.98 | 4.21 || 44.65 | 4.29 || 39.34 | 4.15 || 37.70 | 4.81
Iisr || 3620 | 3.78 || 36.36 | 4.10 || 42.95 | 4.38 || 44.92 | 4.24 || 39.16 | 4.08 || 37.20 | 4.78
Ioor || 3625 | 3.76 || 36.58 | 4.27 || 43.00 | 4.44 || 45.02 | 4.27 || 39.76 | 4.04 || 37.97 | 4.52
Liss.r || 35.34 | 3.87 || 35.47 | 4.63 || 43.10 | 4.22 || 44.91 | 430 || 38.88 | 4.00 || 37.30 | 4.63
Ipc || 40.21 | 3550 || 39.78 | 3.93 || 44.98 | 4.75 || 45.38 | 4.74 || 44.11 | 4.69 || 42.77 | 4.83
Iisc || 41.32 [ 3.01 || 4072 | 2.93 || 45.24 | 4.51 || 46.03 | 4.54 || 43.37 | 4.69 || 41.71 | 4.88
Iooc || 41.36 | 297 || 40.99 | 2.88 || 45.25 | 4.58 || 46.18 | 4.66 || 44.61 | 4.54 || 43.07 | 4.67
Lssq || 40.12 | 3.51 || 39.63 | 3.97 || 45.20 | 4.65 || 45.71 | 4.73 || 42.95 | 4.59 || 41.58 | 4.87
I 36.86 | 2.69 || 37.27 | 2.96 || 43.05 | 4.94 || 44.89 | 5.14 || 41.00 | 5.00 || 40.36 | 5.17
Iisp || 3726 | 237 || 37.42 | 2.38 || 43.75 | 4.71 || 45.42 | 4.70 || 40.35 | 5.05 || 39.61 | 5.29
Ioop || 37.31 | 240 || 37.27 | 2.53 || 43.80 | 4.73 || 45.47 | 4.75 || 41.01 | 4.98 || 40.52 | 5.23
Liss.p || 36.73 | 2.84 || 36.40 | 3.07 || 43.24 | 4.91 || 45.10 | 5.10 || 40.23 | 5.05 || 39.62 | 5.41

Table 1: Average p and standard deviation o of PSNR, computed individually in a leave-one-out manner and by channel.
Best mean values by database and by channel are highlighted in bold fonts.

So S1 So
I o I o M o

DB1

EARI 38.68 | 3.54 36.38 3.67 36.08 3.73

LMMSE 38.51 3.37 37.17 | 3.14 37.21 | 3.06
DB2

EARI 47.03 | 3.78 43.16 | 4.35 43.45 | 4.40

LMMSE 45.61 3.43 42.58 4.24 43.14 4.35
DB3

EARI 39.62 4.74 38.83 | 4.79 36.23 | 4.86

LMMSE 40.96 | 4.77 40.57 | 5.31 38.85 | 4.51

Table 2: Average and standard deviation for CPSNR, com-
puted by Stokes vector component.

used to train the demosaicing matrix. This is in a context
where there is a training procedure and where the eval-
uation is done in a leave-one-out manner. Future work
should confirm the improvement when more data are avail-
able. Visually it seems that LMMSE performs better, but
it needs to be confirmed by a quantitative analysis.

Conclusion

In this work, we applied the LMMSE algorithm to the
specific case of Colour Polarisation Filter Arrays image
demosaicing. We evaluated its performance compared to
EARI and found that it increases statistically the result in
term of PSNR over the database provided by Monno [12].
Thus, we demonstrated that this extension of the algo-
rithm to CPFA is competitive with the last state-of-the-
art dedicated method.

As a future work, the LMMSE demosaicing for CPFA
should be evaluated over a large number of images to
strengthen these results. Those results are obtained on
a specific sensor, and the role of the mosaic pattern on
the demosaicing needs to be investigated.
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Figure 5: REFERENCE. Visualization of zoomed region of interest in reference image.
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Figure 6: EARI. Visualization of zoomed region of interest in image demosaiced with EARI.
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Figure 7: LMMSE. Visualization of zoomed region of interest in image demosaiced with LMMSE.
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Figure 8: Visualization of the Sy Stokes component images, and the DOLP (Degree Of Linear Polarisation) and AOLP (Angle Of Linear Polarisation).
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