
RESEARCH PAPER

Color–polarization filter array image demosaicing:
linear minimum mean squared error augmented

by anisotropic diffusion
Ronan Dumoulin,a Alexandra Spote,a Pierre-Jean Lapray ,a,*

Jean-Baptiste Thomas,b,c and Ivar Farup c

aUniversité de Haute-Alsace, IRIMAS UR, Mulhouse, France
bUniversité de Bourgogne, Department IEM (Informatique, Électronique, Mécanique),

Imagerie et Vision Artificielle (ImVIA) Laboratory, Dijon, France
cNorwegian University of Science and Technology (NTNU), Department of Computer Science,

Gjøvik, Norway

ABSTRACT. Linear minimum mean square error can be used to demosaic images from a color–
polarization filter array (CPFA) sensor. Despite its good performance, the recon-
struction produces high-frequency artifacts. An additional refinement step could
enable enhancement of both the quantitative and visual quality of the demosaiced
image. We propose a complete demosaicing framework by first studying the model
selection for linear minimum mean square error using cross-validation techniques
and then optimizing the anisotropic diffusion parameters. The results show that the
training model converges quickly and that the refinement step enables the reduction
of the edge artifacts. We also demonstrate that the proposed demosaicing method
performs better compared with a dedicated CPFA demosaicing algorithm in terms of
peak signal-to-noise ratio.
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1 Introduction
For multimodal imaging, some sensor uses the strategy of division of focal plane. For these
sensors, the filter is a compound of a mosaic of filters called filter arrays. From the development
of color filter arrays (CFAs), spectral filter array imaging (SFA), and polarization filter array
(PFA) systems,1,2 we observe a tendency toward their generalization to several joint optical
modalities. One particular example is the color–polarization filter array (CPFA). A spatial modu-
lation on the focal plane array permits sampling the intensities of the light field through a combi-
nation of color and polarization filters. A pixel is covered by one color filter and one polarization
filter, so that it detects a specific spectropolarimetric channel among C. This provides a compact
and cost-effective way to capture multimodal information in a single shot.

The SONY IMX250 MYR3 is the most common CPFA sensor commercially available, and
its spatial sampling pattern is shown in Fig. 1. It is a 12-channel sensor, which combines three
color filters arranged in a quad Bayer spatial arrangement4 and four polarization angles of
analysis equally distributed between 0 and 180 deg (p ¼ 0, 45, 90, and 135 deg).5 For each
pixel position, only 1 intensity measurement out of the 12 is made, so the other 11 channel values
are missing.
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To get a full resolution image, a demosaicing algorithm is applied to the images. This has
been widely used for CFA, SFA, and PFA in the past, but now, there are also a few CPFA-
dedicated demosaicing algorithms, which can be classified into two different categories: the
filtering-based methods6,7 and the learning-based methods.8–15

The filtering-based algorithms do not need a training stage and are standalone. One of these
recent techniques dedicated to CPFA is the edge-aware residual interpolation6,16 (EARI) algo-
rithm. The term residual refers to the difference between an observed and a tentative pixel esti-
mation. It starts from the computation of the total intensity image from polarization channels,
i.e., the S0 Stokes vector component (Stokes theory17 is a method for describing polarization
behavior of light). It exploits the redundancy of information that is inherent to PFA sensors,
which have four polarization angles of analysis, whereas only three are sufficient to estimate
the first three Stokes components. Thus, the total intensity S0 is estimated in two ways: either
by S0;1 ¼ I0 þ I90 or S0;2 ¼ I45 þ I135. The two estimations are averaged for each of the four
spatial directions around the pixel to demosaic (north, east, south, and west). Then, weights are
computed in the four directions from the intensity difference S0;1 − S0;2, giving a larger weight if
the difference is small. The weighted average of the intensity estimation forms the guide image.
Finally, the interpolation of missing values is done by residual interpolation,18 using subsampled
images and the computed guide. The same process is applied to each spectral channel.

The learning-based algorithms employ a training stage to define a model that is used for
demosaicing. The chromatic polarization demosaicing network11 (CPDNet) algorithm uses a
convolutional neural network (CNN), trained over a set of 105 full resolution spectropolarimetric
images. The network is made up of four simulation modules composed of three convolutional
layers and one residual block. One simulation module is used to obtain a full red, green and blue
(RGB) image from the mosaiced image. After splitting the RGB image as a function of channel
color, the three other simulation modules are used in parallel to obtain a full polarization image
from the full RGB image. Finally, they concatenate the result and go through three convolutional
layers to obtain the full RGB polarization image. Two-step color–polarization demosaicing
network12 is another learning method formed by two subnetworks, one for color demosaicing
and one for polarization demosaicing. The algorithm is a combination of the EARI and the
CPDNet algorithms. The two subnetworks have the same strategy; the first step is a bilinear
interpolation, and the second step is a refinement with a CNN. They use 30 images for the train-
ing. Qiu et al.8 use the alternating direction method of multipliers (ADMM) framework to solve
the inverse problem. Unlike the other algorithms, it reconstructs the Stokes vector images from
the mosaiced image without estimating the individual channel intensities. They use a training
procedure to obtain a linear model, with an additional noise parameter. The efficiency of the
demosaicing is limited and needs several iterations. Nevertheless, this kind of algorithm has the
advantage of using a limited number of data for the training. For CPFA images, the performance
of the ADMM algorithm is very close to the bilinear algorithm. This paper presents a demosaic-
ing algorithm, based on machine learning [linear minimum mean square error (LMMSE)], and a
refinement algorithm based on anisotropic diffusion. We apply the algorithms to CPFA images

Fig. 1 CPFA filter architecture from the SONY IMX250 MYR sensor. The optical path is composed
of two layers of microfilters, one above the other, where one is made of spectral filters (c ¼ r ; g; b)
and the other of polarization filters (p ¼ 0, 45, 90, and 135 deg). The 0-deg filter is at the top left of
the mosaic (vertical lines). This 4 × 4 pixel arrangement forms what we call a superpixel and is
repeated over the total photosensitive area.
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and study the impact of the number of images used in the training for the demosaicing step.
A dedicated refinement step based on anisotropic diffusion is adapted to the case of CPFA and
permits to enhance jointly the signal-to-noise ratio and the visual quality of the reconstructed
image. We evaluate the performance of the algorithm in terms of peak signal-to-noise ratio
(PSNR) and compare it to a filtering-based technique dedicated to CPFA images.

2 LMMSE Demosaicing
In the case of the joint acquisition of color and polarization, we observe correlations among the
channels.19 This means that demosaicing algorithms can potentially benefit from these correla-
tions, by assuming the separability of the signal autocorrelation, i.e., the inter-channel (spectral/
polarization) and the intra-channel (spatial) relationships. LMMSE demosaicing is based on the
principle of an inverse problem, where the missing values in a mosaic can be reconstructed by a
linear combination of the neighboring pixels.

Originally, the LMMSE was applied to one-dimensional (1D) signal reconstruction, then for
degradation correction in intensity images (such as noise or optical blur),20,21 then for demosaic-
ing of Bayer and other CFA images,20–26 and finally for SFA27 and CPFA.9,10 The algorithm has
the advantage of being retrained with a limited number of images (unlike deep learning methods).

LMMSE training needs both full resolution (references) and mosaiced data. The image
restoration problem has long used a notation of two-dimensional (2D) images in 1D version,
where the data are “vectorized” or “stacked” (2D → 1D) to facilitate computation. Let us define
a 2D image Y with a single band of dimensions N × N by24

EQ-TARGET;temp:intralink-;e001;117;475Y ¼ ½ y1 y2 : : : yN �; (1)

where yk are the column vectors of length N. The vectorized version of Y of dimension N2 × 1 is

EQ-TARGET;temp:intralink-;e002;117;440y ¼ ½ yt1 yt2 : : : ytN �t: (2)

If the imageY has C channels (spectral, polarization, or spectropolarimetric), the channels can be
stacked in the same way as the columns of the 2D image.

To demosaic an image with LMMSE, a training step is first needed to get a linear model,
which is then used to demosaic the image. The imaging model can be written algebraically as

EQ-TARGET;temp:intralink-;e003;117;368x ¼ Hy; (3)

where the vectors x and y are the vectorized versions of the mosaiced and full-resolution images,
respectively, and H represents the mosaicing operator (but can also be considered as an image
degradation function) that selects pixels from y to form each column of x. The dimension ofH is
N2 × ðN2 × CÞ. As the mosaicing is a linear process, it is natural to consider a linear inverse
solution for demosaicing. The estimation of y from the LMMSE can be done by21

EQ-TARGET;temp:intralink-;e004;117;284ŷ ¼ RyHt½HRyH
t�−1x; (4)

where Ry is the autocorrelation matrix of y. It is generally calculated on a set of full-resolution
images and is therefore the expectation of the correlation for several observations of the
signal.

The above model involves the manipulation of matrices of comparable size to images, which
makes the algorithm difficult to implement. Because of the block shift invariance of the sensor,
the restoration can be done independently per super-pixel (a periodic group of pixels in an
image). Without loss of generality, the 1D rearrangement in Eq. (2) can be applied to a
super-pixel instead of the full image. This advantage allows the algorithm to be usable for
any image definition. The demosaicing of a super-pixel in an image can therefore be done
such as

EQ-TARGET;temp:intralink-;e005;117;138ŷj ¼ Dxj; (5)

where j indicates the position of the super-pixel and D the matrix which performs the demosaic-
ing of a super-pixel. This matrix is the same for all super-pixels in the image. The vectors ŷj and
xj, i.e., the matrixed and demosaiced super-pixel, are in a “vectorized” version.
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In the case of CPFA arrangement, and to stabilize the estimate, a neighborhood of 10 × 10

pixels28 around the super-pixel xj is considered (and the same goes for obtaining the matrix D,
see below). In the case of CPFAwith a super-pixel of 4 × 4 to be demosaiced into 12 bands, D is
of size 192 × 100, xj is of size 100 × 1, and ŷj is of size 192 × 1. Figure 2 shows the operations to
demosaic a super-pixel.

To obtain the model D, as for Eq. (4), the algorithm uses a training over a dataset

EQ-TARGET;temp:intralink-;e006;114;410D ¼ V1Ry1H
t
1½H1Ry1H

t
1�−1; (6)

where the index 1 means that a neighborhood is considered for all reference data, i.e., that y1
contains all the vectorized super-pixels with their respective neighborhood. In this way, we can
estimate the demosaiced super-pixel from the mosaiced super-pixel, taking into account its
neighborhood. The matrix V1 is a constant matrix compound of 0 and 1 allowing neighborhood
removal (y ¼ V1y1).

The reconstructed images with LMMSE can produce high-frequency artifacts for some
channels, e.g., grid effect distortions around edges, similar to Moiré patterns. Specifically, the
grid effect becomes particularly visible in homogeneous (flat) areas of the image due to the
strong frequency content of the polarization signal reverberating in the reconstructed channels.
It becomes even more visible when looking at reconstructed polarization parameter images such
as degree of linear polarization (DOLP) or angle of linear polarization (AOLP) [computed as in
Ref. 29, see respectively Figs. 7(i) and 7(p)]. Reducing these artifacts is a way to improve visual
image quality resulting from LMMSE demosaicing. To this end, we propose to enhance the
quality of edges by applying an additional refinement step after LMMSE demosaicing, i.e., the
anisotropic diffusion.

3 Anisotropic Diffusion for Demosaicing
Here, we explain the refinement step for demosaiced images, which is based on an anisotropic
diffusion model. It comes directly after the demosaicing procedure, from which it acts as an edge
restoration. This was originally produced to enhance the edges of intensity images30 and then has
been adapted to RGB images demosaiced by the Poisson algorithm.31 We propose to readapt this
method to the specific case of spectropolarimetric data, i.e., on 12-channel images instead of
three.

As explained in Ref. 31, to couple the 12 channels to take into account the correlations
across the channels and preserve edges better, we use a 2 × 2 structure tensor. This tensor of
the image is defined in each position of the image32

=

Fig. 2 Demosaicing with the LMMSE algorithm. Each superpixel of the image at position j is vec-
torized with its neighborhood, before applying the linear model D.
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EQ-TARGET;temp:intralink-;e007;117;736Sðŷðw; hÞÞ ¼

0
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where ŷðw; hÞ indexes the pixel value and C the channel (C ∈ {R0, R45, R90, R135, G0, G45, G90,
G135, B0, B45, B90, B135}).

The local diffusion coefficient is defined as shown in Eq. (8), inspired by Perona and Malik30

and generalized for the anisotropic case

EQ-TARGET;temp:intralink-;e008;117;639dðλþ Þ ¼
1

1þ κ × λ2þ
: (8)

With λþ and λ−, the eigenvalues of the gradient tensor 7 and κ a chosen constant.
The diffusion tensor A is defined as shown in Eq. (9), with E the matrix with eigenvectors of

the structure tensor corresponding to the eigenvectors λ� as columns

EQ-TARGET;temp:intralink-;e009;117;569A ¼ ET diagðdðλþ Þ; dðλ−ÞÞE: (9)

Equation (10) is the anisotropic diffusion equation

EQ-TARGET;temp:intralink-;e010;117;535

∂ŷC

∂t
¼ ∇ × ðA∇ŷCÞ: (10)

For the discretization, we use the explicit Euler method for the time integration and 3 × 3 con-
volutions with the following kernels to compute the gradients

EQ-TARGET;temp:intralink-;e011;117;479fw ¼

2
64
0 0 0

0 −1 1

0 0 0

3
75 fh ¼

2
64
0 1 0

0 −1 0

0 0 0

3
75; (11)

where fw and fh are the horizontal and vertical gradient kernels, respectively.
The anisotropic diffusion algorithm has three parameters:

• Number of iterations: number of times that the diffusion operation is repeated.
• α is the time step that affects diffusion; the higher α, the greater the diffusion effect.
• κ is the impact edge preservation; the higher κ is, the less there is diffusion across the edges.

Anisotropic algorithm takes four inputs, the demosaiced image and the three parameters. First, it
computes the diffusion tensorA taking into account the value of κ. Next, the diffusion equation is
applied several times (depending on the number of iterations). For each time, the factor α is
applied to increase or decrease the effect of the diffusion. The final image is then obtained.

4 Experimental Protocol

4.1 Database

A recent and up-to-date review of polarization imaging datasets is available.33,34 There are only
three RGB polarization image datasets that do not use a mosaic sensor to capture the full-
resolution spectropolarimetric images.6,11,35 Nevertheless, datasets from Wen et al.11,35 exhibit
non-uniform degree of focus among all channels (demonstrated in Ref. 10), probably due to the
optical configuration of the three-charge coupled device (CCD) acquisition setup. This is some-
how undesirable for the simulation of mosaiced data because there are no reasons to have this
behavior in CPFA images. Thus, we decided to use the database of images fromMorimatsu et al.6

It is composed of 40 spectropolarimetric images of 768 × 1024 pixels, each of them having 12
full-resolution channels. The channels are a combination of three color channels (c ∈ fR;G; Bg)
and four polarization angles of analysis, equally distributed between 0 and 180 deg (p ∈
f0; 45; 90; and 135 degg). Channels are defined by Ic;p. Scenes of this database have been
captured with a three-CCD RGB camera with a rotating polarizer with four orientations.

4.2 Model Selection for LMMSE

Algorithm 1 is developed to evaluate the efficiency of the algorithm when the number of images
increases. In the following, we will refer to this method as the convergence test method. The
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principle is to divide the dataset into two groups, one for learning and one for testing. Images
intended for training should be different from those used for testing to avoid any bias in the
evaluation. For the first iteration, the training is done with one image, and then the 28 test images
are demosaiced. At each iteration, the number of training images is increased by 1, up to 12, and
the demosaicing is performed at each iteration with the same 28 images.

To confirm that 12 images for learning are enough, we use a second cross-validation method
based on the K-fold technique.36 In the following, we will refer to this method as the K-fold
method. This cross-validation makes it possible to draw several sets of validation from the same
database and thus obtain a robust evaluation. The principle is to divide the dataset of images intoK
groups. K − 1 groups are used to train the algorithm, and one group is used to test the algorithm.
There are K iterations so that each individual group serves once as a test group. In our case, we
take n ¼ 24 random images from the database. To vary the number of images used for training, we
vary K ∈ f2; 3; 4; 6; 8; 12; 24g, which gives respectively 12, 16, 18, 20, 21, 22, and 23 learning
images. The last case where K ¼ n ¼ 24 is a special case of the K-fold and corresponds to a
leave-one-out cross-validation. Algorithm 2 shows the different steps of the K-fold experiment.

Algorithm 1 Convergence test method

INPUT: Database

OUTPUT: PSNR (μ, σ)

Select 12 images for learning

Select 28 random images for test

for i ¼ 1∶12 do

Learn D matrix with i images

Demosaic the 28 test images

Compute PSNR for the test group

Compute the PSNR (μ, σ)

end for

Algorithm 2 K -fold method

INPUT: Database

OUTPUT: PSNR (μ, σ)

Select n ¼ 24 random images

for k ¼ 2∶24 do

if 24∕k is an integer then

Create k groups of 24∕k images

for i ¼ 1∶k do

Select the group i for test and other(s) for learning

Learn D matrix with the learning group(s)

Demosaic the test group

Compute PSNR for the test group

end for

Compute the PSNR (μ, σ)

end if

end for
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4.3 Parameter Selection for Anisotropic Diffusion

Figure 3 shows the processing pipeline we use to optimize the anisotropic diffusion algorithm.
For parameter selection, we only use images of the training dataset. The first step is to mosaic the
full-resolution reference images to obtain mosaiced images. Figure 1 shows the spatial arrange-
ment of the filters used to mosaic the images. The second step applies a demosaicing algorithm.
In our case, we selected three algorithms: bilinear, EARI,6 and LMMSE. The third step is to
apply the anisotropic diffusion algorithm. The fourth step computes the mean PSNR over a set
of refined images. This step allows optimizing the parameters (α and κ) of the anisotropic
diffusion algorithm. The optimization of κ and α is realized using the MATLAB function
fminsearch,37 by minimizing the cost function that is the inverse of the PSNR function.

We have chosen to fix the number of iterations because we experimented that it has a similar
impact as α. The number of iterations is fixed to 50 for the three algorithms, this is the same
number used in Ref. 31. The initial values of α and κ are respectively 0.24 and 1000 (the same for
the three algorithms). We chose these values because they were the ones used in the article.31

Steps 3 and 4 are repeated to obtain the values of α and κ, which give the best PSNR value.

5 Results and Analysis

5.1 Metric

To measure the demosaicing quality, two methods are often used: PSNR and structural similarity
index measure (SSIM). The two methods use a reference to assess the demosaicing quality. By
definition, the LMMSE algorithm is optimized for PSNR. To verify the impact of the identified
bias, we have computed the correlation between the PSNR and SSIM results. The aim is to verify
that the results obtained by either measuring PSNR or SSIM are correlated.

We compute the correlation between PSNR and SSIM on a set of color and spectropolari-
metric images (PSNRAll and SSIMAll) and gray level images (PSNRGRAYand SSIMGRAY) for
28 test images. The values of PSNRAll and SSIMAll correspond to the means over the 12 chan-
nels. The RGB images are computed from the S0 ¼ I0þI45þI90þI135

2
intensity components for each

spectral channel. To convert RGB images to gray level, the MATLAB function rgb2gray is used.
Figure 4 shows the correlation results. It is computed over the 28 images. The correlation

between PSNR and SSIM for spectropolarimetric images is 0.76, and the p-value is 3 × 10−6. For
the gray version of images, the correlation is 0.77, and the p-value is 1.4 × 10−6. These results
verify that the PSNR and SSIM values are correlated for the set of images, i.e., the PSNR or the
SSIM can be used interchangeably to assess the quality of the results. That is why we thought
reasonable to use only PSNR to evaluate the LMMSE demosaicing results in the following.

5.2 Quantitative Results

Figure 5 shows the average PSNR values and standard deviations obtained with the convergence
test method. We can see that the PSNR values stabilize with a relatively low number of images.
The conclusion is that 12 images for learning are enough with the Morimatsu dataset. The PSNR
values are higher for the four green channels than for other channels, probably because the green
channels are spatially oversampled. This oversampling allows more information to be available
to reconstruct the data lost during mosaicing.

Fig. 3 Processing pipeline used to optimize the anisotropic diffusion parameters.
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Figure 6 shows the average PSNRs and standard deviations obtained with the K-fold
method. It can be seen that the variations in PSNRs are small for numbers of training images
from 12 to 23. This means that the model has already converged. The PSNRs for the green
channels are supposed to be higher than those of the blue and red channels because the green
channels are sampled more densely than the others. This oversampling allows more information
to be available to reconstruct the data lost during mosaicing. This confirms that the algorithm
converges quickly and therefore does not need many images to perform well. It should be noted
that the global PSNR averages are different compared with the convergence test method. As the
scenes used for the tests are different for the two methods, the results vary depending on the
image statistics.

Table 1 shows the optimal values of κ and α obtained after the optimization step for bilinear,
EARI, and LMMSE. We can note that, in the case of the bilinear algorithm, the value of α (the
time-step for solving the numerical equation) is near the theoretical upper limit for the stability

Table 1 Optimal parameter values for the refinement step (α and
κ—anisotropic diffusion) applied to each of the following demosaic-
ing methods: bilinear, EARI, and LMMSE.

Parameter Bilinear EARI LMMSE

α 0.2695 0.057 0.008

κ 1.2431 × 104 1.6781 × 107 2.7891 × 103

Table 2 Average μ and standard deviation σ of PSNR for bilinear, EARI, and LMMSE algorithms
without and with anisotropic diffusion refinement.

Channel

Bilinear EARI LMMSE

With refinement—anisotropic diffusion
(optimized with PSNR)

Bilinear EARI LMMSE

μ σ μ σ μ σ μ σ μ σ μ σ

I0;R 35.36 4.45 38.15 4.48 39.65 3.85 36.51 4.23 38.32 4.45 39.92 3.91

I0;G 38.11 4.38 43.58 4.53 44.47 4.19 40.51 4.44 43.99 4.48 44.66 4.18

I0;B 36.10 4.88 40.99 5.14 41.26 4.77 37.54 4.95 41.18 5.03 41.55 4.84

I45;R 35.04 4.43 37.64 4.55 39.33 3.82 36.12 4.24 37.78 4.55 39.53 3.89

I45;G 37.66 4.35 42.49 4.64 43.72 4.45 39.91 4.46 42.82 4.63 43.94 4.46

I45;B 35.71 4.92 40.29 5.28 40.55 4.77 37.08 5.02 40.45 5.22 40.92 4.86

I90;R 35.47 4.42 38.23 4.48 39.84 3.91 36.58 4.17 38.38 4.45 39.95 3.94

I90;G 38.20 4.43 43.80 4.63 44.75 4.27 40.64 4.53 44.26 4.59 44.87 4.26

I90;B 36.10 4.92 41.11 5.27 41.16 4.60 37.62 5.07 41.33 5.26 41.48 4.63

I135;R 35.10 4.48 37.68 4.49 39.03 3.89 36.16 4.25 37.82 4.43 39.22 3.94

I135;G 37.71 4.41 42.42 4.70 43.17 4.41 39.86 4.54 42.66 4.66 43.35 4.42

I135;B 35.75 4.89 40.32 5.42 40.42 4.79 37.13 5.05 40.52 5.37 40.75 4.95

S0 37.32 4.35 41.38 4.57 42.34 4.31 38.73 4.26 41.42 4.52 42.53 4.37

S1 43.34 4.37 47.21 4.61 48.73 3.84 45.35 4.72 48.13 4.70 49.15 3.78

S2 41.75 4.69 44.97 4.90 45.70 4.18 43.14 4.91 45.27 4.97 46.00 4.19

Best mean values by channel and algorithms are highlighted in bold fonts. PSNR is computed on the image
without the borders (border size of 4 pixels).
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condition (0.25 for a three-dimensional image with a pixel spacing of 4). This value is higher than
for EARI and LMMSE. It can be explained by the fact that the demosaicing quality of bilinear is
lower than for EARI or LMMSE. The κ value for the bilinear algorithm is lower than that for
EARI. Indeed, as the EARI algorithm better reconstructs high frequencies, the value of κ is high,
which helps preserve details. The κ value of LMMSE is low because LMMSE produces zipping
artifacts. To mitigate these artifacts, κ value should have a lower value.

Table 2 shows the average PSNRs and standard deviations for bilinear, EARI, and LMMSE
algorithms, without and with anisotropic diffusion refinement. We can see that the best values of
the PSNR average are given by the LMMSE with anisotropic diffusion refinement. For LMMSE,
on average, the anisotropic diffusion algorithm improves the PSNR value of 0.2 dB. We can also
see that the anisotropic diffusion refinement improves the quality of demosaicing bilinear and
EARI algorithm in terms of PSNR. The quality improvement in terms of PSNR is significant,
probably due to the low PSNR values given by the bilinear method.

For the runtime to process one image of size 768 × 1024 pixelswithout anisotropic diffusion
refinement, we report 0.19 s for bilinear, 10.1 s for EARI, and 0.89 s for LMMSE. With the
refinement, we have 11.83 s for bilinear, 21.72 s for EARI, and 12.46 s for LMMSE. These
runtimes are obtained using a laptop with 16 GB RAM, a processor Intel core I5-8265U, and
without any GPU usage.

(a) (b) (c)

(d) (e) (f) (g) (h) (i) (j)

(k) (l) (m) (n) (o) (p) (q)

(r) (s) (t) (u) (v) (w) (x)

(y) (z) (aa) (ab) (ac) (ad) (ae)

Fig. 7 Visualization results for the scene called “cup2” from the Morimatsu dataset.6 Two zoomed
areas, representing the DOLP and the AOLP, are visualized in false colors. An-di stands for aniso-
tropic diffusion. (a) Reference S0. (b) Reference DOLP G. (c) Reference AOLP G. (d) Zoomed
reference. (e) Bilinear. (f) Bilinear with An-di. (g) EARI. (h) EARI with An-di. (i) LMMSE. (j) LMMSE
with An-di. (k) Zoomed reference. (l) Bilinear. (m) Bilinear with An-di. (n) EARI. (o) EARI with An-di.
(p) LMMSE. (q) LMMSE with An-di. (r) Zoomed reference. (s) Bilinear. (t) Bilinear with An-di.
(u) EARI. (v) EARI with An-di. (w) LMMSE. (x) LMMSEwith An-di. (y) Zoomed reference. (z) Bilinear.
(aa) Bilinear with An-di. (ab) EARI. (ac) EARI with An-di. (ad) LMMSE. (ae) LMMSE with An-di.
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5.3 Qualitative Results

Figure 7 shows the result of LMMSE, bilinear, and EARI demosaicing without and with refine-
ment for image “cup2.” For LMMSE, on the zoom of DOLP and AOLP images, we can see that
the anisotropic diffusion refinement reduces the impact of zipping artifacts [see the bird’s wing in
Figs. 7(i) and 7(j) for DOLP and Figs. 7(p) and 7(q) for AOLP]. For the first zoomed image, the
refinement improves the PSNR’s value by 0.3 dB. For the full image, the PSNR’s value without
refinement is 41.61 dB, whereas it is 41.65 dB with refinement. The given values of PSNR
correspond to the mean of PSNR’s values over the 12 bands.

We can also see that the visual improvement for bilinear is important for both DOLP
Figs. 7(e) and 7(f) and AOLP Figs. 7(l) and 7(m). In terms of PSNR, the improvement is also
important, for the first zoomed image, where the PSNR increased by 2.56 dB with the refine-
ment. For the full image, the PSNR without refinement is 34.44 dB and with refinement is
36.18 dB. This result confirms the visual observation.

For the EARI, the visual improvement is also visible on the bird’s wing in Figs. 7(g) and 7(h)
for DOLP and Figs. 7(n) and 7(o) for AOLP. In terms of PSNR, for the first zoomed image, the
refinement increases the PSNR’s value by 0.19 dB. For the full image, the PSNR’s value without
the refinement is 38.10 dB and with is 38.43 dB.

On the second zoomed image, for the three algorithms, we see that the refinement step
succeeds with keeping details [see Figs. 7(s)–7(x) for DOLP and Figs. 7(z)–7(ac) for AOLP].
We can also observe that LMMSE offers a better reconstruction of the text.

Figure 8 shows the result of LMMSE, bilinear, and EARI demosaicing without and with
refinement for image “doll2.” As for Fig. 7, we see that applying anisotropic diffusion to the
output of bilinear CPFA demosaicing greatly improves the visual results. For EARI, we can see
a better reconstruction of the central circle in DOLP images in Figs. 8(g) and 8(h) and reduction
of some artifacts for AOLP in Figs. 8(n) and 8(o). For LMMSE, we can see that the reconstruc-
tion of the circle is more accurate in DOLP [Figs. 8(i) and 8(j)] and reduction of some artifacts
for AOLP.

6 Conclusion
In conclusion, we adapted a machine learning demosaicing algorithm (LMMSE) to the specific
case of color polarization filter array images. We study the impact of the number of training

(a) (b) (c)

(d) (e) (f) (g) (h) (i) (j)

(k) (l) (m) (n) (o) (p) (q)

Fig. 8 Visualization results for the scene called “doll” from the Morimatsu dataset.6 Two zoomed
areas, representing the DOLP and the AOLP, are visualized in false colors. An-di stands for aniso-
tropic diffusion. (a) Reference S0. (b) Reference DOLP R. (c) Reference AOLP R. (d) Zoomed
reference. (e) Bilinear. (f) Bilinear with An-di. (g) EARI. (h) EARI with An-di. (i) LMMSE. (j) LMMSE
with An-di. (k) Zoomed reference. (l) Bilinear. (m) Bilinear with An-di. (n) EARI. (o) EARI with An-di.
(p) LMMSE. (q) LMMSE with An-di.
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images and optimize an anisotropic diffusion refinement algorithm to improve the visual quality
of LMMSE demosaicing by reducing the zipping artifact and preserving the details. In terms of
PSNR, the refinement increases the mean values by 0.2 dB. Depending on the image, the
improvement of the complete proposed algorithm (LMMSE + refinement) is between 0.01 and
0.5 dB on a database of 28 images. The refinement improves PSNR and visual quality even for
filtering-based algorithms (EARI algorithm), which suggests that this algorithm can also be a
good direct extension for improving the best state-of-the-art methods for demosaicing.

As future work, we could investigate other possibilities for the computation of the diffusion
tensor than the gradients from the 12 bands. We could also study the possibility to parallelize
LMMSE on dedicated hardware compatible with video streams.
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