# Joint demosaicing of colour and polarisation from filter arrays



Norwegian University of Science and Technology

Alexandra Spote<sup>†</sup>, Pierre-Jean Lapray<sup>†</sup>, Jean-Baptiste Thomas<sup>\*</sup>, and Ivar Farup<sup>\*</sup> <sup>†</sup>Université de Haute-Alsace, IRIMAS, Mulhouse, France

\*Norwegian University of Science and Technology, Department of Computer Science; Gjøvik, Norway

#### ABSTRACT

This work considers the joint demosaicing of colour and polarisation image captured with a Colour and Polarisation Filter Array sensor. The Linear Minimum Mean Square Error (LMMSE) algorithm is applied to this case, and its performance is compared to the state-of-the-art Edge-Aware Residual Interpolation algorithm. Results show that the generic demosaicing LMMSE method gives statistically higher PSNR scores on the largest tested database.

### **QUANTITATIVE EVALUATION**

|              | DB1 (150Mo) |          |       |          | DB2 (530Mo) |          |       |          | DB3 (1.4Go) |          |       |          |
|--------------|-------------|----------|-------|----------|-------------|----------|-------|----------|-------------|----------|-------|----------|
|              | LMMSE       |          | EARI  |          | LMMSE       |          | EARI  |          | LMMSE       |          | EARI  |          |
|              | $\mu$       | $\sigma$ | $\mu$ | $\sigma$ | $\mu$       | $\sigma$ | $\mu$ | $\sigma$ | $\mu$       | $\sigma$ | $\mu$ | $\sigma$ |
| $I_{0,R}$    | 35.25       | 3.79     | 35.49 | 4.45     | 42.98       | 4.21     | 44.65 | 4.29     | 39.34       | 4.15     | 37.70 | 4.81     |
| $I_{45,R}$   | 36.20       | 3.78     | 36.36 | 4.10     | 42.95       | 4.38     | 44.92 | 4.24     | 39.16       | 4.08     | 37.20 | 4.78     |
| $I_{90,R}$   | 36.25       | 3.76     | 36.58 | 4.27     | 43.00       | 4.44     | 45.02 | 4.27     | 39.76       | 4.04     | 37.97 | 4.52     |
| $I_{135,R}$  | 35.34       | 3.87     | 35.47 | 4.63     | 43.10       | 4.22     | 44.91 | 4.30     | 38.88       | 4.00     | 37.30 | 4.63     |
| $I_{0,G}$    | 40.21       | 3.50     | 39.78 | 3.93     | 44.98       | 4.75     | 45.38 | 4.74     | 44.11       | 4.69     | 42.77 | 4.83     |
| $I_{45,G}$   | 41.32       | 3.01     | 40.72 | 2.93     | 45.24       | 4.51     | 46.03 | 4.54     | 43.37       | 4.69     | 41.71 | 4.88     |
| $I_{90,G}$   | 41.36       | 2.97     | 40.99 | 2.88     | 45.25       | 4.58     | 46.18 | 4.66     | 44.61       | 4.54     | 43.07 | 4.67     |
| $I_{135,G}$  | 40.12       | 3.51     | 39.63 | 3.97     | 45.20       | 4.65     | 45.71 | 4.73     | 42.95       | 4.59     | 41.58 | 4.87     |
| $I_{0,B}$    | 36.86       | 2.69     | 37.27 | 2.96     | 43.05       | 4.94     | 44.89 | 5.14     | 41.00       | 5.00     | 40.36 | 5.17     |
| $I_{45,B}$   | 37.26       | 2.37     | 37.42 | 2.38     | 43.75       | 4.71     | 45.42 | 4.70     | 40.35       | 5.05     | 39.61 | 5.29     |
| $ I_{90,B} $ | 37.31       | 2.40     | 37.27 | 2.53     | 43.80       | 4.73     | 45.47 | 4.75     | 41.01       | 4.98     | 40.52 | 5.23     |
| $I_{135,B}$  | 36.73       | 2.84     | 36.40 | 3.07     | 43.24       | 4.91     | 45.10 | 5.10     | 40.23       | 5.05     | 39.62 | 5.41     |

### CPFA

- The Colour and Polarisation Filter Array (CPFA) sensor with 12 channels,
- A commercial implementation is the SONY IMX250 MYR.



**Figure 1:** Average  $\mu$  and standard deviation  $\sigma$  of PSNR, computed individually in a leave-one-out manner and by channel. Best mean values by database and by channel are highlighted in bold fonts.

(1)

(2)

## LMMSE (2)

The mosaicing matrix M is computed, such as:

$$oldsymbol{x} = oldsymbol{M}oldsymbol{y}$$
 ,

where x is the unfolded matrix X. The mosaicing matrix M is block-shift invariant.

The aim of demosaicing is to estimate  $\hat{y}$  from the observations x, such that the estimate image is the most faithful to the reference matrix y. This is achieved by the **demosaicing matrix** D, which is a pseudo-inverse

#### **QUALITATIVE EVALUATION**



(a) Ref.  $S_0$ 



**(b)** EARI *S*<sub>0</sub>

(c) LMMSE  $S_0$ 



**Figure 1:** The CPFA sensor case. The  $4 \times 4$  super-pixel is composed of 4 linear polarization filters and 3 spectral filters.

### LMMSE (1)

We apply the LMMSE algorithm [1] for the case of CPFA. Be *Y* the full-resolution image, and *X* the mosaiced CPFA image.

The algorithm applies a vectorization: the full-resolution data Y is unfolded by superpixel, giving the matrices y.



of M, such that:

$$\hat{y} = \boldsymbol{D} \boldsymbol{x}$$
 .

*D* is computed with the Wiener filtering approach on a dataset of *k* images:

$$\boldsymbol{D} = E_i \{ \boldsymbol{y} \boldsymbol{x}^t (\boldsymbol{x} \boldsymbol{x}^t)^{-1} \} , \qquad (3)$$

where *E* is the expectation, and  $i \in [1, k]$  indexes the image in the dataset.

### EXPERIMENT

The experiment is conducted over three existing database of full-resolution spectropolarimetric images.

- **DB1**: Lapray *et al.* [2] (DB1, 10 images, 150Mo of data),
- DB2: Qiu et al. [4] (DB2, 40 images,



(j) Ref. S<sub>0</sub>

(1) LMMSE  $S_0$ 



(k) EARI  $S_0$ 



**Figure 2:** Visualization of the  $S_0$  Stokes component images, and the DOLP (Degree Of Linear Polarization) and AOLP (Angle Of Linear Polarization). Region of interest of images from [3].

X - v3
G
B
v15
v4
v8
v12
v16

**Figure 2:** Example of the unfolding columns by columns of a CFA superpixel of  $2 \times 2$  pixels (red square) with a neighborhood of  $4 \times 4$  pixels.

The same principle is applied to CPFA to unfold each  $4 \times 4$  superpixel with a neighborhood of  $10 \times 10$ , and construct *y*.

530Mo of data),

• **DB3**: Monno *et al.* [3] (DB3, 40 images, 1.4Go of data).

We demosaic the images using two methods:

- Our application of the LMMSE method to CPFA [1],
- The Edge-Aware Residual Interpolation (EARI) [3].

### REFERENCE

- [1] P. Amba, J. B. Thomas, and D. Alleysson. N-Immse demosaicing for spectral filter arrays. *Journal of Imaging Science and Technology*, 61(4):40407–1–40407–11, 2017.
- [2] P.-J. Lapray, L. Gendre, A. Foulonneau, and L. Bigué. Database of polarimetric and multispectral images in the visible and NIR regions. In C. Fournier, M. P. Georges, and G. Popescu, editors, *Unconventional Optical Imaging*, volume 10677, pages 666 – 679. International Society for Optics and Photonics, SPIE, 2018.
- [3] M. Morimatsu, Y. Monno, M. Tanaka, and M. Okutomi. Monochrome and color polarization demosaicking using edge-aware residual interpolation. In 2020 IEEE International Conference on Image Processing (ICIP), pages 2571–2575, 2020.
- [4] S. Qiu, Q. Fu, C. Wang, and W. Heidrich. Polarization Demosaicking for Monochrome and Color Polarization Focal Plane Arrays. In H.-J. Schulz, M. Teschner, and M. Wimmer, editors, *Vision, Modeling and Visualization*. The Eurographics Association, 2019.