
Production of high-resolution reference polarization images
from real world scenes
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ABSTRACT

A few polarization image datasets depicting real world scenes have been reported. Some of them are available
on an open-data basis. Some databases contain color images, often with color bands reconstructed from a sensor
equipped with a Bayer filter. Unfortunately, even if these real-world images depict a variety of objects and
situations and have a good overall quality (ie the spectral bands and the various polarization channels are or can
be registered, noise is reduced), they often have a low definition (smaller than 1 Mp), a low bit depth and are
captured with a large lens aperture, resulting in very band-limited images. Moreover, the demosaicing procedure
used to reconstruct the various color bands has a smoothing effect, reducing their resolution. This latter point
proves detrimental when it comes to use these images as references for demosaicing algorithms, especially for
RGB images: since each channel combining polarization direction and spectral band is very sparse in the base
mosaic pattern, artifacts likely to appear are considerably underestimated with band-limited images. In this
work, we review existing polarization image databases, focus on non-mosaiced datasets and propose a technique
to produce HD polarization images with superior quality.
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1. INTRODUCTION

Some polarization image databases or datasets depicting real world scenes have been reported over the past few
years.1–18 Availability of high bandwidth communication networks and large data repositories allows researchers
to easily share reference databases, especially with the development of open data. Their content is diverse, as
well as the way they were captured. Some of them are rather dedicated to testing new vision algorithms, whereas
others were made for general purpose, including low-level demosaicing algorithms required by sensors equipped
with microgrid polarimeters arrays (sometimes named Polarizer Filter Arrays or PFAs).

All of these datasets include polarization information, either images in various polarization directions or
Stokes information. Most of them contain color information, and some of them, dedicated to vision applications,
also contain depth information grabbed with an additional sensor. All of them claim they contain ground truth
data. Nevertheless, images produced from mosaic array sensors, either with polarization microgrids or a color
array, should not be considered as ground truth references when used for testing low level algorithms such as
demosaicing algorithms.

In this work, we will review and benchmark existing databases and then will propose to make HD polarimetric
images free from common defects, especially misregistration between polarization and color bands.

In Section 2, polarization basics will be briefly recalled. In Section 3, polarization databases and datasets
will be reviewed and we will focus on the databases containing full definition data (ie non interpolated from a
microarray sensor). In Section 4 we will describe metrics well suited to polarization images. Then Section 5 will
propose and implement several recommendations for making HD polarization images.
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2. POLARIZATION BASICS

In the following, we will only deal with linear polarization, but such considerations can easily be extended
to elliptical polarization which is the most general case. Capturing polarization in an imaging way consists in
grabbing images with a polarization state analyzer (PSA). In the case of linear polarization, the polarization state
analyzer is often a camera equipped with a linear polarizer the orientation of which can be precisely controlled.19

In order to speed up the process, the rotating polarizer can be replaced with a fixed polarizer and a liquid crystal
cell.20 Another very popular solution is to use a camera equipped with an array of micropolarizers,21 but it
requires a demosaicing procedure which can create more or less noticeable artifacts.22

At least N=3 different orientations of the polarizer are required to estimate the full linear polarization
information. Using N > 3 orientations allows to reduce noise. It can be shown that using equally spread angles
over [0;180°] optimizes the precision of the estimation process.21 Therefore, it is quite a common strategy to
capture polarization information with a polarizer oriented at {0, 45, 90, 135}°. We name the corresponding
intensities I0, I45, I90 and I135. From these raw images, we first estimate Stokes parameters related to linear
polarization

s0 =
1

2
(I0 + I45 + I90 + I135), s1 = I0 − I90, s2 = I45 − I135, (1)

and then common polarization metrics, namely degree of linear polarization (DoLP ) and angle of polarization
(AoLP )

DoLP =

√
s21 + s22
s0

, AoLP =
1

2
arctan

(
s2
s1

)
. (2)

3. OVERVIEW OF EXISTING POLARIZATION DATABASES

3.1 Overview of existing polarization databases

Some polarization image databases or datasets depicting polarization scenes have been reported in the literature
over the last few years.1–18 They contain the capture of various scenes under natural or artificial (be it controlled
or not) illumination. They present very different characteristics: some of them are partly synthetic, some of them
also contain depth information, ... They were used for testing algorithms, ranging from demosaicing algorithms
to segmentation algorithms. Tab. 1 summarizes basic characteristics of these various datasets. This table,
regularly updated, is available online.23 It contains information found in the referenced papers as well as that
provided by their authors in response to our questions.

In the following, we will focus on the full definition datasets -we will name them non-interpolated datasets-,
not produced with polarization or color filter array sensors, that can be used for testing demosaicing algorithms.

3.2 Polarization datasets usable for testing demosaicing algorithms

We will now only consider the 5 full definition polarization databases with more than 20 scenes,3,5–7,10 produced
by sensors not using any micro-filters, since they are the only ones to contain non interpolated ground-truth data.
Therefore, they can be used for testing demosaicing algorithms without any bias due to previous interpolation.

Tab. 2 reports information about the images. Among the 5 considered databases, Sargent’s sounds very
interesting since it provides the images with the largest definition and the largest bit-depth. Moreover, the
limited lens aperture has probably produced sharp images.

In the following we will focus on the objective quality of the images. A further step would be to get interested
in the polarimetric content of the images, as Sargent et al.6 did.

4. EVALUATION CRITERIA

In the following, we focused on two characteristics of images in the various datasets: alignment of the various
color and polarization channels, likely to create polarization artifacts, and image sharpness, since demosaicing
artifacts may appear more easily in sharp images.



Table 1: Basic characteristics of imaging polarization datasets. Empty cells means that no information was available. An
up-to-date version of the table is available online.23

dataset availability
number of

scenes
definition

bit-
depth

mosaiced
sensor

mono /
color

Abubakar1 6 1280 x 960 8 NO mono
Lapray2 GitHub 10 1024 x 768 12 yes RGB/IR
Qiu4 univ. repository 40 1024 x 1024 8 yes RGB

Zeng (’Forknet’)3 upon request 120 1280 x 960 8 NO mono
Wen 20195 GitHub 105 1456 x 1088 8 NO RGB
Morimatsu7 univ. repository 40 1024 x 768 10 NO RGB
Sargent6 24 2448 x 2048 10 or 12 NO mono

Ba9 google drive 326 1024 x 1024 11 yes RGB
Wen 2021a10 GitHub 40+10 720 x 540 8 NO RGB
Wen 2021b11 GitHub 8 1384 x 1032 8 yes RGB

Blin12 zenodo.org 2060 500 x 500 8 yes RGB
Sun13 google drive 132 2048 x 1848 8 yes RGB

Sattar14 GitHub 28 1224 x 1024 8 yes RGB
Lei15 GitHub 522 1224 x 1024 11 yes RGB
Ono16 upon request 82 2448 x 2040 11 yes RGB

Kurita17 upon request 729+82+238 2448 x 2048 12 yes RGB
Liu18 upon request 200+100 2448 x 2048 yes RGB

4.1 Shift between polarization channels

First, we report imaging metrics for a scene (’bottle’) extracted from Morimatsu et al.’s7 dataset in Fig. 1.
DoLP and AoLP are evaluated in the green band. As for many images in this dataset or in other datasets,
much information appears in DoLP images (Fig. 1(b) and (e)), at the edges of objects or on textured objects.
But this information looks like an edge extraction: the original polarization images in the four directions are
shifted and produce polarization artifacts. This phenomenon is well known24 and should be compensated for:
even a 1/20th pixel shift causes noticeable polarization metrics degradation. We only considered shift caused by
translation and we evaluated the subpixel shifts with an automated algorithm based on correlation25 over the
considered datasets. We found that mean shifts between each polarization direction could be as high as 1 pixel.
Shifts between color bands are also noticeable. We register the green and blue bands onto the red band and the
original polarization images I45, I90 and I135 onto I0 with a uniform rigid translation.25 We report the result of
this operation for the ’bottle’ scene from Morimatsu’s dataset in Fig. 1 (g)-(l). The changes in s0 images are
not spectacular. It is different for polarization images: most artifacts disappear, and we obtain what is probably
close to genuine polarization information.

We detail in Tab. 3 the average shifts between polarization images for Morimatsu’s database (but other
databases are also concerned). For each considered database, we report in Tab. 4 average and maximum figures
of shift between all polarization directions.

For instance, Wen et al.’s 2019 database presents a low shift between original polarization images and regis-
tering them does not provide any significant improvement. Shift figures for ’Forknet’ database are high, but the
authors clearly mention the phenomenon in their paper and the solution (ie the rigid registration) to alleviate
it. Such a shift is therefore a problem only if you do not compensate for it.

4.2 Image sharpness

It seems reasonable that the evaluation of demosaicing algorithms in a precise way requires sharp images. Many
metrics can be used to evaluate blur;26 we chose to use no-reference bounded blur metrics27,28 to evaluate image
sharpness. They give similar results for the datasets we tested, we will only report in the following Cumulative
Probability of Blur Detection (CPBD) figures.28



Table 2: Characteristics of datasets with full-definition images. An up-to-date version of the table is available online.23

dataset Forknet3 Wen 20195 Sargent6 Morimatsu7 Wen 2021a10

number of
scenes

120 105 24 40 50

definition 1280 x 960 1456 x 1088 2448 x 2048 1024 x 768 720 x 540
spectral bands mono RGB mono RGB RGB

bit-depth 8 8 10 or 12 10 8

camera
Point Grey
BFLY-U3-
23S6M-C

JAI AP-
1600T-USB

Blackfly
JAI

CV-M9GE
3-CCD

FLIR BFS-
U3-04S2m-cs

sensor Sony IMX249
3x Sony
IMX273

Sony IMX250
Sony

ICX204AL
Sony IMX287

sensor
technology

CMOS CMOS CMOS CCD CMOS

pixel pitch (µm) 5.86 3.45 3.45 4.65 6.9
averaged images 1 1 50 1000 1

PSA type
rotating pol.
+ CMOS

rotating pol.
+ prism + 3

CMOS

rotating pol.
+ CMOS

prism + 3
CCD

rotating pol.
+ rotating

color wheel +
CMOS

polarizing
element

Tiffin 49CP
49mm

polarizer

Sigmakoki
SPF-50C-32

objective lens
Fujinon

12.5mm 2/3”
lens aperture fixed f/1.4 f/8 f/1.4

Table 3: Shifts (in pixels) between polarization directions for Morimatsu et al.’s database (average figures over the whole
dataset).

Red band
I0 I45 I90 I135

I0 0.34 0.20 0.35
I45 0.34 0.25 0.59
I90 0.20 0.25 0.35
I135 0.35 0.59 0.35

Green band
I0 I45 I90 I135

I0 0.34 0.20 0.34
I45 0.34 0.26 0.60
I90 0.20 0.26 0.35
I135 0.34 0.60 0.35

Blue band
I0 I45 I90 I135

I0 0.33 0.21 0.32
I45 0.33 0.24 0.56
I90 0.21 0.24 0.33
I135 0.32 0.56 0.33

Fig. 2 reports CPBD figures for all available non-mosaiced datasets. The datasets with sharper images are
reported to be Wen et al.’s 2019 dataset and ’Forknet’ dataset. We verified (Fig. 3) that blur figures were
independent of image size and compared, for Wen’s 2019 database, images at the original definition (1456x1088),
cropped images (definition is 720x540, and the field of view is reduced) and resized images (definition is 720x540,
and the field of view is that of original images). Cropped images exhibit CPBD figures somewhat similar to
original images whereas resized images exhibit lower CPBD figures. Therefore, the CPBD metric seems only
dependent on the image sharpness.

Nevertheless, blur figures must be considered with much caution. Fig. 4 displays the I0 images in the various
color bands of scene #44 from Wen et al.’s 2019 dataset as well as corresponding CPBD figures. CPBD figures
are much higher for the blue band, whereas it appears blurry. We also tried the blur metric proposed by Crété
et al.27 which also produced counter-intuitive figures.



s0

(a)

DoLP

(b)

0

0.5

1
AoLP

(c)

0

100

s0

(d)

DoLP

(e)

0

0.5

1
AoLP

(f)

0

100

s0

(g)

DoLP

(h)

0

0.5

1
AoLP

(i)

0

100

s0

(j)

DoLP

(k)

0

0.5

1
AoLP

(l)

0

100

Figure 1: scene ’bottle’ from Morimatsu et al.’s dataset.7 (a,d,g,j) are classic RGB displays, (b,e,h,k) correspond to
DoLP in the green band and (c,f,i,l) to AoLP in the green band. (d)-(f) are close-ups of (a)-(c) and (j-l) are close-ups of
(h)-(i).(a)-(f) images correspond to raw data from Morimatsu et al.’s database, (g)-(k) correspond to registered data.

Table 4: Shifts (in pixels) between polarization directions (0°, 45°, 90° and 135°): average and maximum figures for all
datasets (green band).

dataset Forknet3 Wen20195 Morimatsu7 Wen2021a10

Average shift 1.13 0.10 0.34 0.24
Maximum shift 1.90 0.16 0.62 0.43

5. PREPARING HD POLARIZATION IMAGES

5.1 Setup description

Considering the lack of very high definition high bit-depth polarimetric images, we decided to capture sharp high
resolution (20 Mp) 12-bit monochrome polarization images. We used a CMOS Lucid Vision camera TRI200S
equipped either with an Edmund Optics 25mm f/1.8 objective lens or with a Fujinon 16mm f/1.8 objective lens.
Finding an objective lens that can work in conjunction with this sensor is not obvious since the sensor has a 1”
diagonal and a 2.4 µm pitch. We used a rotating polarizer in front of the objective lens and captured data in
the 4 classic directions 0°, 45°, 90° and 135°. Provided incident illumination is not polarized.
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Figure 2: CPBD figures for non-mosaiced datasets reported as interval plots. Color bands are considered separately. The
sharper the images, the higher the CPBD.
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Figure 3: CPBD figures for Wen et al.’s 2019 dataset reported as interval plots. Figures are provided for images in their
original size (1456x1088), for cropped images (720x540) and for images resized to 720x540.

Images are captured in the maximum available definition (20 Mp), in 12-bit mode at the camera maximum
frame rate which is only 3.5 fps with the Gigabit internet interface. Since we average 50 images to lower noise,
the acquisition time for each polarization direction is 14.3 s. Therefore, it seems difficult at this point to organize
outdoor acquisitions with this configuration.

We used as a preliminary target reference patterns spread on a 7x5 grid printed on a A4 paper sheet. Both
lenses produced a noticeable distortion. Fig. 5 depicts the reference pattern acquired at 495 mm from the camera
with the 16mm lens opened at f/11 and reports the produced distortion. The reference marks are the white ’+’s.
Since the target is not centered (the image is actually cropped), it is difficult to model a distortion, but it seems
we have a barrel distortion.

5.2 Reference target polarimetric acquisitions

As expected, rotating the polarizer creates a shift which is easily visible when displaying s1, DoLP or AoLP .
Fig. 6 displays close-ups of the bottom-left ’+’ of Fig. 5(a). Let us look at the left column, which describes
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Figure 4: scene #44 from Wen et al.’s 2019 dataset. R, G and B bands are displayed for I0 image. CPBD figures appear
not to fit the reader’s perception of blur.
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Figure 5: (a): reference target captured with 16mm lens at f/11, I0 image. (b): grid estimated from ’+’ positions in (a)

results obtained when computing the polarization metrics from (1) and (2). Unexpected edges appear on s1, as
well as on DoLP . This shift is estimated and corrected using Guizar-Sicairos et al.’s technique25 which operates
a rigid subpixel translation. Results are reported in the center column of Fig. 6. Registration of I45, I90 and
I135 onto I0 provides minor improvement: edges are still very visible on DoLP . If we look at other patches in
the entire DoLP image (not reported here), we see that registration sometimes worked better: in some parts of
the image, artifact edges almost completely disappeared. Finally, we decided to evaluate the shifts locally for
the 7x5 elementary patches with the images already registered by Guizar-Sicairos et al.’s technique. They are
reported in Tab. 5 (left part).

Table 5: Residual shifts (in pixels) along the 7x5 grid in the reference pattern described in Fig. 5a after registration with
Guizar-Sicairos et al.’s algorithm (left) and with our adaptive registration algorithm (right). These figures correspond to
the maximum shift between I0, I45, I90 and I135.

2.24 1.87 1.70 1.54 1.88 2.34 2.64
1.91 1.89 1.82 1.80 2.12 2.39 2.48
1.97 2.00 2.13 2.22 2.41 2.56 2.44
1.90 2.07 2.28 2.59 2.83 2.95 2.62
1.62 2.13 2.25 2.85 3.31 3.45 2.80

0.04 0.07 0.06 0.04 0.04 0.07 0.05
0.01 0.02 0.05 0.02 0.02 0.00 0.04
0.05 0.05 0.01 0.05 0.04 0.01 0.03
0.10 0.07 0.10 0.03 0.04 0.02 0.01
0.14 0.01 0.09 0.04 0.03 0.05 0.03

For each patch, we reported the maximum shift between any of the images I0, I45, I90 and I135. We can see
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Figure 6: close-ups of the bottom left patch of the reference target. (a) shows s0 the intensity image. Subimages in the
left column depict results without prior registration of the raw images I0, I45, I90 and I135. Subimages in the center
column depict results with registration of the raw images I45, I90 and I135 onto I0 according to Guizar-Sicairos et al.25

Subimages in the right column depict results with our adaptive registration of the raw images I45, I90 and I135 onto I0.
The third, fifth and seventh rows ((e)-(g), (k)-(m), (q)-(s)) respectively report profiles of the images of the second, fourth
and sixth rows ((b)-(d), (h)-(j), (n)-(p)) along the location described by dashed green segment in subfigure (a).

that these shifts, sometimes nearly as high as 3 pixels, are therefore likely to create huge polarimetric artifacts.



We tried several techniques to register the images, taking into account rotation and scale as well as translation,
but none of these classic techniques brought a significant improvement. Alternatively, we decided to implement
a warping algorithm to register the images. For each of the polarization images I45, I90 and I135, the shifts with
I0 are evaluated at the center of each of the 7x5 patches with Guizar-Sicairos et al.’s technique. Then a 2-D
fourth degree polynomial deformation function is determined for each I45, I90 and I135 at the 7x5 grid points
and used to warp them onto I0. The maximum shifts are locally evaluated and reported in Tab. 5 (right part).
With our adaptive registration, the shifts are considerably lower than those obtained with Guizar-Sicairos et al.’s
rigid registration. Fig. 7 shows the example of the ’+’ of the bottom left patch. We display simultaneously I0
and I90 with the help of color: colors appear in the case of shift between the two images. Without registration,
a large shift is visible. With classic registration, the shift is lower, but still significant, with artifact edges larger
than 5 pixels. With the improved adaptive registration we propose, the shift is hardly visible, the image presents
almost no color. The images corresponding to our adaptive registration are displayed in the right column of Fig.

Figure 7: close-up of the bottom left patch of the reference target depicted Fig. 5a when we display I0 and I90 at the
same time. The sub-images are 80 pixel wide. (a): without registration, (b): with Guizar-Sicairos et al.’s registration,
(c): with our adaptive registration. (d) depicts the colorbar we used.

6.

ConsideringDoLP , with the adaptive registration, artifacts edges completely disappeared: there was probably
no polarization information on edges. On the profile plot (j), DoLP appears smoother than on profiles (k) or
(l): registration considerably lowered noise. Considering AoLP , improved registration also acted as a denoiser,
but edge information is still visible; we cannot assess whether it be artifacts or not. The computational cost of
all these processings is moderate, much smaller than the time required acquiring the images. It is reported in
Tab. 6. Guizar-Sicairos et al.’s technique proves faster, at the expense of poorer registration quality.

Table 6: Computation times for the various registration algorithms (per polarization direction) on an Apple MacBook
with M2 Max under Matlab R2022b.

algorithm Shift/deformation estimation Registration
Guizar-Sicairos et al. 1.70 s 0.10 s

Ours 3.90 s 2.64 s

5.3 Real-world scene polarimetric acquisition

The same setup, with the same configuration (focus and lens aperture), was used to acquire a real-world 3D
scene, depicted in Fig. 8. Fig. 8a reports the scene capture by a smartphone, with a different viewing angle and
an unknown gamma. Fig. 8b reports the scene capture by the 20 Mp camera with gamma set to 1. The scene
appears much darker (saturations are avoided except in specular reflection zones), but we verified that the 12-bit
acquisition preserves information in dark zones. We estimated CPBD from the 12-bit I0 image and obtained



(a) (b)
Figure 8: real-world 3D scene used for experiments, shot with a smartphone under ambient light (a) or with the 20Mp
camera with a polarizer under controlled illumination (b). The two images have different viewing angles and camera
gamma settings.

CPBD=0.75. It corresponds to a rather sharp image. We simulated an 8-bit acquisition, it would have led to
CPBD=0.32.

We evaluated polarization metrics without registration, with classic rigid registration and with our improved
registration. For our algorithm, the deformation inverse model is that previously estimated with the reference
target. We report results for DoLP (Fig. 9). The rigid registration provides significant improvement, reducing
artifacts at the edges. Using our improved registration provides an extra significant improvement, visible on
close-ups.
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Figure 9: DoLP images for a real world scene, without registration (a), with rigid registration (b) and with our adaptive
registration (c). (d)-(f) are close-ups of the previous images.



6. DISCUSSION

Identifying polarization datasets and comparing their basic characteristics is not that complicated, even if the
articles reporting the making of these databases do not always give precise information. Benchmarking these
various databases by assessing the quality of the images is much more complex. We only considered the quality
of the individual polarization images with blur metrics, eventually their registration, but we did not take their
polarimetric content into account, as Sargent et al.6 did for their own dataset. The non-interpolated 4 datasets
we benchmarked3,5, 7, 10 proved of overall good quality, but we aimed to produce a data set with higher definition
and higher bit-depth.

But producing high definition high bit-depth polarization images proves a challenging task. It requires a high
quality registration of the different channels. Until now, with low definition images (let’s say below 1 Mpixel), a
rigid registration such as Guizar-Sicairos et al.’s was necessary and sufficient to avoid most polarization artifacts:
this technique can estimate and fix very tiny shifts, even 1/20th pixel, which is usually admitted to be met in
order to avoid most problems. But with cameras producing larger images, with larger sensors and a small pixel
pitch, commercial objective lenses exhibit significant distortions resulting in artifacts larger than a pixel. This
distortion can be finely characterized and with the correction technique we proposed, artifacts can be reduced
within 0.15 pixels. For instance, on our reference target printed on a paper sheet, so with a low polarization
configuration, it allowed us to get DoLP images with reduced noise and even more reduced polarization artifacts.
On the AoLP images, the paper grain clearly appears, whereas it was blurred without proper registration. As far
as a real world scene was considered, results were also spectacular, with major polarization artifacts cancelled.
Some edge information still remains, but without any known model of the scene, it is unclear whether this is
genuine polarization information or artifacts.

In this preliminary work, we only produced gray-leveled images but in the future, a color version could
be implemented either by tuning the illumination (with a liquid crystal filter for instance) or by adding color
filters in front of the polarization state analyser.10 This latter solution may produce additional shifts between
color bands, but the technique we implemented for the registration of polarization channel could be extended to
register the color bands.

So technically there is an efficient solution to the registration problem of HD images, but with a major
limitation: a proper geometric calibration with a reference target was necessary, in the exact same conditions
of lens aperture, lens focus and polarizer orientation as in the final scene capture. This technique is therefore
rather dedicated to laboratory experiments and may be difficult to implement in outdoor conditions for routine
operations.

7. CONCLUSION

We first made a review of existing imaging polarization databases and datasets. We focused on databases made
with full definition sensors (without any array of microfilters) that can be used for testing demosaicing algorithms
produced by sensors equipped with arrays of color filters and/or microgrid polarizers. We showed that these
databases contained raw data that must be used with much caution: for a given image, either the various
polarization bands -or color bands- are not aligned or they are aligned, but present blurry content.

We decided to produce high definition polarization scenes with polarization channels properly registered
and rather sharp images. We showed the registration of the various bands is not trivial, since the images
suffer from significant distortion due to the optics and cannot be registered with a classic 2-D translation.
We proposed an adaptive registration procedure which required a proper geometric calibration. Hence, high-
definition polarization images have been produced, with extremely reduced polarization artifacts.

Existing databases have sometimes been used for the definition and evaluation of state-of-art learning-based
and interpolation-based demosaicing algorithms without proper prior registration. As a future work, it would
be very important to study the impact of the registration in the specific context of benchmarking demosaicing
algorithms.
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